6 TH GRADE MATH

Algebraic Expressions

Extra! Extra! Read all about it!

Smart Score on IXL

- 100% 5 extra points
- 95% 4 extra points
- 90% 3 extra points
- 85% 2 extra points
- 80% 1 extra point

Unit 5 Topics - You can earn up to 140 extra credit points! You got this (3)

 $(REVIEW) \Rightarrow -5.0A.A.2 \text{ Write-simple-expressions-that-record-calculations-with-numbers-and-interpret-numerical-expressions-without-evaluating them.}$

- 1. Write numerical expressions: one operation (5-0.3)
- 2. Write numerical expressions: two operations (5-0.4)

6.EE.A.1 Write and evaluate numerical expressions involving whole-number exponents.

- 3. Write multiplication expressions using exponents (6-D.1)
- 4. Write powers of ten with exponents (6-D.3)
- 5. Evaluate exponents (6-D.2)
- 6. Find the missing exponent or base (6-D.4)
- 7. Exponents with decimal bases (6-D.5)
- 8. Exponents with fractional bases (6-D.6)

6.EE.A.2.a Write expressions that record operations with numbers and with variables.

- 9. Write variable expressions: one operation (6-Y.1)
- 10. Write variable expressions: two operations (6-Y.2)

6.EE.A.2.b Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity.

- 11. Identify terms and coefficients (6-Y.7)
- 12. Sort factors of variable expressions (6-Y.8)
- 13. Sort factors of numerical expressions (6-E.12)

6.EE.A.2.c Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations).

- 14. Evaluate numerical expressions involving whole numbers (6-0.3)
- 15. Evaluate numerical expressions involving decimals (6-O.6)
- 16. Evaluate numerical expressions involving fractions (6-O.9)
- 17. Identify mistakes involving the order of operations (6-0.)
- 18. Evaluate variable expressions with whole numbers (6-Y.4)
- 19. Evaluate multi-variable expressions (6-Y.5)
- 20. Evaluate variable expressions with decimals, fractions, and mixed numbers (6-Y.6)
- 21. Evaluate variable expressions: word problems (6-Y.)
- 22. Convert between Celsius and Fahrenheit (6-T.10)

6.EE.A.3 Apply the properties of operations (including, but not limited to, commutative, associative, and distributive properties) to generate equivalent expressions. The distributive property is prominent here.

- 23. Write equivalent expressions using properties (6-Y.14)
- 24. Multiply using the distributive property (6-Y.11)
- 25. Factor using the distributive property (6-Y.12)

6.EE.A.4 Identify when expressions are equivalent (i.e., when the expressions name the same number regardless of which value is substituted into them).

- 26. Identify equivalent expressions I (6-Y.16)
- 27. Identify equivalent expressions II (6-Y.17)
- 28. Identify equivalent expressions using strip models (6-Y.)

Exponents

Name:

Date:

Daily Target: I can write and solve numbers exponential form.

Exponent

The _____ of times a number is _____ by _____.

Example!

$$5^5 = 5 \times 5 \times 5 \times 5 \times 5 =$$

$$3^4 = 3 \times 3 \times 3 \times 3 =$$

$$6^3 =$$

Rewrite the number as a multiplication problem and solve each expression.

1)
$$10^3 =$$

3)
$$7^2 =$$

5)
$$3^0 =$$

2)
$$2^3 =$$

4)
$$4^4 =$$

Rewrite the multiplication problem in exponential notation.

3)
$$3 \times 3 \times 3 \times 3 =$$

4)
$$5 \times 5 \times 5 \times 5 \times 5 =$$

Error Analysis:

Mr. Frost said that 7² was equal to 49 while Mr. Wainwright said **7**² was equal to 14. Who is correct and why?

Challenge Problem!

Kyle sends an email to 6 people and each of those people will send the email to 6 more people, and so on. Write an expression shows the number of people that will receive the email after the fourth round. How many people will receive the e-mail after the 4^{th} round?

order of oberons

The order of operations is a rule that tells you the sequence to follow when you are performing operations in a mathematical expression.

subtraction addition division multiplication exponents parentheses

Do P, then E. Then do M or D, left to right. Lastly, do A or S, left to right.

Evaluating Expressions

Name: _____

Date:

4(2+3.5)

Daily Target: I can evaluate given expressions.

Evaluating Expressions

An _____ can be _____ by _____

for the _____

Example:

Steps:

E - ____

Evaluate Each Expression:

1) $2(4) + 3^3$

3)
$$5 + 2(20 \div 5)$$

2)
$$12 + 2 \cdot 3$$

4)
$$(2+4)^2 \div 2$$

Word Problem Practice:

A cell phone company charges \$50 per month plus a \$45 activation fee.

- a. Write an expression for the total cost for m months
- b. Then evaluate your expression for 10 months of service.

Challenge Problem!

A student have Mr. Mickens the following problem:

$$5(y+2.4) \div 2$$

How could he re-write this using the distributive property? If y = 2, what would the answer be?

Name:

Solve the following using PEMDAS

1)
$$6 \cdot 5 + 1$$

The order of operations:

- Parentheses ()
 Exponents 5²
- 3. Multiplication × or Division ÷ 4. Addition + or Subtraction –

2)
$$2 + 5 \div 5$$

8)
$$7^2 + 4^2$$

9)
$$96 - 3^3$$

4)
$$7(5+8)$$

10)
$$19 - 3^2 + 5$$

5)
$$(6+3) \times 3$$

6)
$$50 - (2 \times 8)$$

7)
$$4 + 26 - 1^2$$

Parts of an Expression	Name:	Date:
Daily Target: I can identify and define pa		***************************************

term	sum	product	quotient
A single	+		
number or	<u></u>		
variable		-	

Vocabulary

factor	coefficient	constant	variable
The numbers	to multiply a	A number or	A letter that
youto		letter on its	a
get the product			number.

₂ 2x	•	x +	6 = 8
	1	1	
-	-		-

Practice! (Label the expression with the correct terms from above)

$$5m + (6p + 4) = 27$$

$$(7 \div b) - 2a = 15$$

Daily Target: I can evaluate given expressions.

Evaluating Expressions

An _____ by _

____ for the ____

Example:

Step One:

_____ the expression, leaving for the variables.

4(x+3y)

$$x = 2$$
; $y = 5$

Step Two:

____the given value for the variables.

Step Three:

_____the expression. (PEMDAS)

Evaluate Each Expression:

1)
$$2x + y^3$$

 $x = 4$; $y = 3$

3)
$$5 + 2 (x \div y)$$

 $x = 20$; $y = 5$

2)
$$x + y \cdot 3$$

 $x = 12$; $y = 2$

4) 3 (
$$(x + y)^2 \div 2$$

x = 2; y = 4

Word Problem Practice:

A cell phone company charges \$50 per month plus a \$45 activation fee.

- a. Write an expression for the total cost for m months
- b. Then evaluate your expression for 10 months of service.

		 r
Writing Expressions	Name:	 Date:
Daily Target: I can write and translate a		
Variable		
A that is represen	ted by a	
<i>Example</i> : a number plus $3 \rightarrow b + 3$		
Examples:		
The difference between 20 and a nu	mber	1
A number reduced by 7		
4 times the quotient of 3 and a number	ber	
3 less than a number		
3 plus the product of 4 and a numbe	r	
Practice!		
5 less than 2 times a number		
The difference between 4 squared a	nd 2	
9 increased by the product of 3 and	8	
The product of 2 and 6 decreased by	7 6	
7 times the difference of g and 9		
The product of h and 4 increased by	2	
Word Problems: Writing Equa	tions	Challenge!

Ms. Juengel says that the expression 6 less than m can is written as m – 6. A student challenges her and says the expression is actually written as 6 - m. Who is correct and why?

Ms. Juengel bought 32 notebooks at the store. The total amount she spent was \$19.20. Write an equation to represent how many notebooks she bought.

Name	Period	Date
	Translating Words to Algebraic Expressions	s #1
Direct	ions: Translate the following phrases into algebraic expressions	or equations.
1.	Six less than twice a number is 45.	
2.	A number minus seven yields ten.	
3	The total of six and some number.	
5.	The total of SIX and Some number.	
4.	A number divided by 14 equals 16.	
5	Six less than three times a number.	
٥.	of ress than three times a number.	
6.	6 less than the product of a number and 2	
7.	The quotient of seven and a number	
	1	
8.	The difference of six and a number divided by nine	

Let's Turn Words Into Math

* If the variable isn't given, you may choose your variable.

	Words	Operation	Expression
1	Five more than a number		
2	The difference of a number and 12 squared		
3	16 divided by a number <i>x</i>		
4	24 minus a number <i>h</i> is 20		
5	The sum of 14 and a number t		
6	The quotient of a number and 21		
7	The product of 9 and a number m		
8	14 less than a twice number n		
9	A number <i>b</i> squared decreased by 11		
10	A number <i>p</i> divided by 20		
11	4 times the sum of y and fifteen		
12	A number multiplied by ten		
13	The total of a number x and 12		
14	The difference of a number n and 7 times 4		
15	The quotient of a number and 9		
16	Three times a		
	number <i>m</i>		
17	18 less than 2 times w		
18	The product of 7 and a number <i>n</i>		
19	15 taken from a number x is 30		
20	Half of a number		

<u>Combining</u>	Like Terms
------------------	------------

Name: _____ Date

Daily Target: I can use my knowledge of coefficients and constants to combine like terms.

Key Points/Vocabulary:

- Algebraic expressions can be _____ or written in a more condensed way.
- A _____ is a single number (ex. $4n + 5 \rightarrow 5$ is the constant)
- A ______ is the number being multiplied with the variable (ex. $4n + 5 \rightarrow 4n$ is the coefficient)
- If there is no number next to the variable, the coefficient is 1. (ex. a = 1a)
- Like terms are terms that are the _____ (same variable)

Example/Visuals:

Step One:

Find your _____ terms (the terms with the _____

12x + 7 + 5x

_____ after it!)

Step Two:

Using the + or – signs in front of them, _____ whether to add or subtract your _____ . (If there is none, it is +)

Step Three:

Add/Subtract the numbers ______ to _____ to _____ the expression

Step Four:

_____ with other _____ terms.

Practice! (Simplify the Expressions!)

1)
$$10x - 3x + 7$$

4)
$$7t + 2r - 3t + r$$

3)
$$x + 4 + 2x + 5$$

6)
$$5x + 6y + 2xy + 4x - 2y$$

Challenge Problem! (Simplify the Expression)

$$3x + 5y + x^2 + 4 + 3x^2 - 2 + 2y - x$$

How to Combine Like Terms

same to make a simplified shorter list of items. To Combine Like Terms, we add together items that are the

Consider the following family take-away order:

We can write this in Algebra as: 2b + f + d + 3b + 2f + 2d

If we combine like items, we get a simplified list as follows:

Different Properties	Different	Properties
----------------------	-----------	------------

Name:

Date: _

<u>Daily Target</u>: I can identify different properties of a given expression.

Property	Definition	Examples
Identity	"Identity is the same" zero won't change the sum. by 1 won't change the product.	13 + 0 = a + 0 = 7 x 1 = a x 1 =
Multiplicative property of Zero	"Multiplying by" When you multiply by zero, your answer is zero.	2 x 0 = a x 0 = 0 x b =
Commutative	" <u>CO</u> mmutative" = <u>C</u> hange	3 + 2 = + 5 • 7 = • 17 + 8 + 3 = 17 + + 5 • 18 • 2 = 5 • •
Associative	Associate with Different = move parentheses How #'s are grouped when + or x and does not change their sum product.	$6 + (4 + 8) = (_ + _) + 8$ $4 \cdot (5 \cdot 9) = (_ \cdot 5) \cdot _$ (4 + 2) + 2 = 4 + (2 + 2)
Distributive	Distributive = Distribute number to each part A (B + C)	4 • (20 + 3) = 4 • + 4 • 6 • (30 + 1) = • 30 + • 1

NAME

Name the property represented by each equátion.

D = Distributive; M = Multiplicative of Zero; A = Associative; C = Commutative; I = Identity

$$\underline{\hspace{1.5cm}} \textbf{1.} \hspace{1.5cm} 5 (6+7) = 5 \times 6 + 5 \times 7$$

2.
$$a \times 0 = 0$$

$$\underline{\hspace{1cm}} 3. \quad (4+5)+3=4+(5+3)$$

_____4.
$$8 \times 9 + 8 \times 14 = 8 (9 + 14)$$

6.
$$(8+9)+(7+6)=(7+6)+(8+9)$$

8.
$$43 \times (17 \times 65) = (43 \times 17) \times 65$$

$$\underline{} 9. \qquad 109 \times 35 \times 89 = 89 \times 109 \times 35$$

10.
$$5 \times 10 + 5 \times 7 = 5 (10 + 7)$$

11.
$$a + b = b + a$$

12.
$$8 \times 1 = 8$$

______ **13.**
$$a(b+c) = ab + ac$$

_____**14.**
$$(a+b)+c=a+(b+c)$$

______**15.**
$$a+b+c=b+c+a$$

ADDITIONAL NOTES

 	
<i>√</i>	

ADDITIONAL NOTES

_

ADDITIONAL NOTES .